responsible of the commanders are to --

- Protect troops.
- Plan and select location of survivability positions (fighting positions and protective positions or bunkers).
- Improve and maintain unit survivability.
- Provide materials
- Supervise construction
- Inspect survivability position.
- Obtain technical advice from engineers, as required.

References: FM 5-103, Chapter 4, and FM 5-34, Chapter 4.

DO--

Ensure adequate material is available.
Dig down as much as possible.
Maintain, repair, and improve positions continuously.
Inspect and test position safety daily, after heavy rain, and after receiving direct and indirect fires.
Revet excavations in sandy soil (see 7, step 2).
Interlock sandbags for double wall construction and corners.
Check stabilization of wall bases.
Fill sandbags approximately 75 percent.
Construct to standard.
Use common sense.

DON'T--

- Fail to supervise.
- Use sand for structural support.
- Use sandbags for structural support.
- Forget to camouflage.
- Drive vehicles within 6 feet of a position.
- Overfill sandbags.
- Put soldiers in marginally safe survivability positions.
- Take shortcuts.
- Build above ground unless absolutely necessary.
- Forget lateral bracing on stringers.
SUMMARY OF MATERIALS

In a combat situation, it may be necessary to improvise construction of a survivability position by using materials normally associated with the construction. Examples of field expedient materials are--

WALL REVETMENT

Sheet metal
Corrugated sheet metal
Plastic sheeting
Plywood
Air mat panels
Air Force air load pallets

STAND-ALONE POSITIONS

Concrete catch basins, valve pits, and utility boxes.
Military vans
Consolidated express (CONEX) containers.
Large diameter pipe/culvert
Steel water tanks
Other storage tanks (cleaned and ventilated)
Vehicle hulks

OVERHEAD COVER STRINGERS

Single pickets
Double pickets
Railroad rails
I beams
Pipe, 2 inches in diameter and larger
Timbers, 2'x4', 4'x4', and larger
Reinforced concrete beams
55-gallon drums, cut longitudinally in half
Large diameter pipe/culverts, cut in half
Precast concrete panels, 6-8 inches thick
Airfield panels
Air Force air load pallets
Shipping pallets

WALL CONSTRUCTION

(BUILDING UP)

Sand grid material
55 gallon drums, filled with sand
Expended artillery shells, filled with sand
Shipping boxes/packing material
Prefabricated concrete panels
Prefabricated concrete traffic barriers

NOTE: All positions require a minimum of 18 inches of dry sand for overhead cover (double thickness for wet sand).

PRECONSTRUCTION PHASE

Determine the level of protection required through intelligence preparation of the battlefield (IPB): observation and fire, concealment and cover, obstacles, key terrain, and avenues of approach (OCOKA); and mission, enemy, terrain, troops, and time available (METT-T). See page 4, Table 1, for a summary of protection levels of common threat weapons systems for direct and indirect fire.
PROTECTION FOR FIGHTING POSITIONS

Position may be hasty or deliberate, depending on availability of time or material. Positions may be dug manually or mechanically. Table 1 shows required thickness for protection against direct and indirect fire.

Table 1. Material thickness (cm/in) for protection against direct and indirect fire.

<table>
<thead>
<tr>
<th>Material</th>
<th>Direct Fire</th>
<th></th>
<th>Indirect Fire</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HE-Shaped Charge</td>
<td>Mortar</td>
<td>Mortar/Rocket/HE Shell</td>
<td></td>
</tr>
<tr>
<td>Small Caliber (7.62)</td>
<td>30 (12)</td>
<td>76 (30)</td>
<td>91 (36)</td>
<td>10 (4)</td>
</tr>
<tr>
<td>(RPG7)</td>
<td>85mm</td>
<td>120mm and</td>
<td>82MM</td>
<td>120mm and</td>
</tr>
<tr>
<td>107mm and</td>
<td>61 (24)</td>
<td>91 (36)</td>
<td>25 (10)</td>
<td>46 (18)</td>
</tr>
<tr>
<td>120mm (RCLR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(SAGGER)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravel, small rocks,</td>
<td>81 (32)</td>
<td>229 (90)</td>
<td>274 (108)</td>
<td>20 (8)</td>
</tr>
<tr>
<td>bricks, rubble</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil, sand</td>
<td>107 (42)</td>
<td>198 (78)</td>
<td>244 (96)</td>
<td>30 (12)</td>
</tr>
<tr>
<td>Timber</td>
<td>91 (36)</td>
<td>229 (90)</td>
<td>274 (108)</td>
<td>20 (8)</td>
</tr>
<tr>
<td>Snow (tamped)</td>
<td>183 (72)</td>
<td>396 (156)</td>
<td>None</td>
<td>152 (60)</td>
</tr>
</tbody>
</table>

NOTE: HE = high explosive

TYPES OF FIGHTING POSITIONS

Figures 1 through 3 show types of fighting positions. Fighting positions are for protection of personnel and equipment directly involved in combat.

Figure 1. One-soldier fighting position
Figure 2. Two-soldier fighting position.

Figure 3. Crew-served fighting position.
POSITION PLANNING

Table 2 contains the estimated construction time for individual fighting positions and the protection they provide.

<table>
<thead>
<tr>
<th>Type of Position</th>
<th>Estimated Construction Time w/ hand - tools (man-hours)</th>
<th>Nuclear Weapons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hasty</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crater</td>
<td>0.2</td>
<td>Fair</td>
</tr>
<tr>
<td>Skirmisher's trench</td>
<td>0.5</td>
<td>Fair</td>
</tr>
<tr>
<td>Prone position</td>
<td>1.0</td>
<td>Fair</td>
</tr>
<tr>
<td>Deliberate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>One-soldier position</td>
<td>3.0</td>
<td>Fair</td>
</tr>
<tr>
<td>One-soldier position with 1½ ft overhead cover</td>
<td>8.0</td>
<td>Good</td>
</tr>
<tr>
<td>Two-Soldier position</td>
<td>6.0</td>
<td>Fair</td>
</tr>
<tr>
<td>Two-Soldier position with 1½ ft overhead cover</td>
<td>11.0</td>
<td>Good</td>
</tr>
<tr>
<td>Light antitank weapon (LAW) position</td>
<td>3.0</td>
<td>Fair</td>
</tr>
</tbody>
</table>

NOTE: Deliberate positions do not provide protection from medium artillery (fire) closer than 30 feet.

CONSTRUCTING A FIGHTING POSITION

Figures 4 through 9 outline the steps for construction of a fighting position.

STEP 1: Excavate earth.
Slope walls 1:4 (for every 4 feet in depth, slope back 1 foot).
Pile dirt a minimum (min) of 1 foot from the edge of excavation or ¼ C, whichever is greater.

STEP 2: Install revetment
Use sheeting material and pickets to revet walls in sandy soil to prevent cave-in.
Tie back pickets and posts.
Drive pickets at least 1/3 C into the ground.

Figure 4. Earth excavation.

Figure 5. Revetment installation.
STEP 3: Install floor drain and hand-grenade sumps (seasonal, optional).
- Slope the floor from rear to front.
- Use pallets for floor cover, if necessary.
- Install a 1' x 1' rock sump the length of the position.
- Install a hand-grenade sump on the front wall (a minimum of 5 inches wide at a 45-degree angle.)

STEP 4: Install supports for overhead stringers (bearing plates)
- Set supports back from the edge of the excavation at least 1 foot or 1/4 C, whichever is greater.
- Use timbers, pipes, or concrete beams for supports.
- Dig in supports approximately 1/2 their height.

STEP 5: Install stringers.
- Use stringers that are 2"x4", 2"x6", or 4"x4" timbers, pipes, or pickets (Use best/largest available)
- Use tables on pages 13 and 14 for stringer spacing.
- Use lateral bracing (sandbags, ammo cans) to prevent rolling.
- L = Span of stringer.
- PL = Position length.
- h = Stringer spacing.
- C = Depth of cut.
- SL = Support length (SL = PL + C)

Figure 6. Floor drain and hand-grenade sump installation.

Figure 7. Overhead stringer support installation.

Figure 8. Stringer installation.
STEP 6: Install overhead cover (OHC) and camouflage.

- Use sheeting or 1-inch plywood for dustproof layer (could be boxes or plastic panel).
- Use sandbags with sand for cushion layer.
- $d = \text{depth of cushion layer} \ (1\frac{1}{2} \text{ feet minimum})$.
- Use plastic or a poncho for waterproof layer.
- Camouflage with surrounding topsoil and lightweight camouflage screen system (LCSS).

![Diagram of OHC installation]

Add rock layers above waterproof layer to stop delayed bursts of mortars up to 82mm.

Figure 9. Overhead cover and camouflage installation.

CONSTRUCTION PROTECTIVE POSITIONS

Protective positions are for protection of personnel and equipment which are not normally directly involved with fighting the enemy. However, during defensive situations, they can be used as fighting positions as shown in Figures 10 and 11. Basic criteria to consider when designing a protective position or bunker are the purpose (command post or fighting position) and the degree of protection desired (small arms, mortars, or bombs) (see page 4, Table 1). The bunker can be constructed completely or partially underground. Prefabrication of bunker assembly (wall and roof) allows rapid construction and placement flexibility. When using construction timber, avoid notching. Add a waterproof layer before camouflaging. A variety of positions can be made with locally procured materials. Common field bunkers are shown in FM 5-103, Chapter 4. For additional bunker designs, see FM 5-103, Appendix B.

![Diagram of command bunker]

Figure 10. Command bunker.
CONSTRUCTING BUILT-UP POSITIONS

In situations where survivability positions must be constructed above ground (for example, where bedrock prevents excavation), general considerations are--

- Use only when absolutely necessary.
- Use camouflage with surrounding top soil. Slope to blend in with the terrain.
- Do not use sandbags as structural support (for example, a sandbag wall supporting OHC).
- See page 2 for appropriate construction and structural material.
- Consult FM 5-103 for above ground bunkers and shelters.
- When using metal shipping container upside down. The original bottom is designed to support more load.
CONSTRUCTING WITH SANDBAGS

The stretchers and headers technique serves to tie together double walls as illustrated in Figure 12. Figure 13 shows staggering of sandbags. Figures 14 and 15 show anchoring methods.

Figure 12. Stretchers and headers.
Figure 13. Staggering of sandbags.
Figure 14. Picket anchor.
Figure 15. Sandbag anchor.

FIGHTING POSITION DESIGN

Table 3, page 13, and Table 4, page 14, provide information for designing fighting positions using 8-foot picket stringers and 4”x4” wood stringers. Following is an example of each:

8-FOOT STEEL PICKET

L = 6’
d = 2’
c = 5’
PL = 6’
SL = 11’
h = 5 inch center-to-center spacing
(from Table 3, page 10)
8-foot pickets (open side down).
16 pickets required.

4”x4” WOOD STRINGER

L = 6’
d = 2’
c = 5’
PL = 6’
SL = 11’
h = 10 inch center-to-center spacing
(from Table 4, page 11)
4”x4” stringers.
9 stringers required.
CENTER-TO-CENTER SPACING FOR STEEL PICKETS

Use the following procedure to determine center-to-center stringer spacing:

1. Determine L (span length in feet). For L ≤ 3', use column a (≤ = equal to or less than); for L ≤ 6', use column b; for L ≤ 9' use column c (see Table 3).

2. Determine the number of layers of sandbags required. One sandbag layer is equal to approximately 5 inches. The layers of sandbags equal the cushion layer of your OHC design.

3. Use the smallest number that is greater than the number of layers in your design.

4. Intersect row and column to determine the maximum span between steel picket stringers.

5. Add four sandbag layers if using a burst layer.

<table>
<thead>
<tr>
<th>Number of Sandbag layers</th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>3'</td>
<td>7</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>6'</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>9'</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>15 (75 inches)</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>20 (100 inches)</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Single Picket*</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>2 (10 inches)</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>5 (25 inches)</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>10 (50 inches)</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>15 (75 inches)</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>20 (100 inches)</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Double Picket**</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>2 (10 inches)</td>
<td>7</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>5 (25 inches)</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>10 (50 inches)</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>15 (75 inches)</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>20 (100 inches)</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>

* Used with open side down.
** Two pickets are welded together every 6 inches along the span to form box beams.
CENTER-TO-CENTER SPACING FOR WOOD STRINGERS

Use the following procedure to determine center-to-center stringer spacing:

Table 4. Center-to-center spacing for wood stringers.

<table>
<thead>
<tr>
<th>NORMAL STRINGER SIZE (inches)</th>
<th>DEPTH OF SOIL (a) M (Feet)</th>
<th>SPAN LENGTH (L) M (Feet)</th>
<th>CENTER-TO-CENTER STRINGER SPACING (h) CM (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.6 (2)</td>
<td>1.2 (4)</td>
</tr>
<tr>
<td>2" x 4"</td>
<td>1.2 (4)</td>
<td>7.6 (3)</td>
<td>10 (4)</td>
</tr>
<tr>
<td></td>
<td>0.9 (3)</td>
<td>46 (18)</td>
<td>30 (12)</td>
</tr>
<tr>
<td></td>
<td>0.6 (2)</td>
<td>46 (18)</td>
<td>36 (14)</td>
</tr>
<tr>
<td>2" x 6"</td>
<td>0.9 (3)</td>
<td>46 (18)</td>
<td>46 (18)</td>
</tr>
<tr>
<td></td>
<td>1.2 (4)</td>
<td>46 (18)</td>
<td>46 (18)</td>
</tr>
<tr>
<td>4" x 4"</td>
<td>0.9 (3)</td>
<td>18 (7)</td>
<td>25 (10)</td>
</tr>
<tr>
<td></td>
<td>1.2 (4)</td>
<td>46 (18)</td>
<td>46 (18)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4" x 8"</td>
<td>1.2 (4)</td>
<td>9 (3.5)</td>
<td>10 (4)</td>
</tr>
<tr>
<td></td>
<td>1.5 (5)</td>
<td>30 (12)</td>
<td>30 (12)</td>
</tr>
<tr>
<td></td>
<td>1.8 (6)</td>
<td>46 (18)</td>
<td>46 (18)</td>
</tr>
<tr>
<td>5" x 6"</td>
<td>1.2 (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5 (5)</td>
<td>36 (14)</td>
<td>36 (14)</td>
</tr>
<tr>
<td></td>
<td>1.8 (6)</td>
<td>46 (18)</td>
<td>46 (18)</td>
</tr>
<tr>
<td>6" x 8"</td>
<td>1.2 (4)</td>
<td>14 (5.5)</td>
<td>15 (6)</td>
</tr>
<tr>
<td></td>
<td>1.5 (5)</td>
<td>46 (18)</td>
<td>46 (18)</td>
</tr>
<tr>
<td>8" x 8"</td>
<td>1.2 (4)</td>
<td>19 (7.5)</td>
<td>23 (9)</td>
</tr>
<tr>
<td></td>
<td>1.5 (5)</td>
<td>46 (18)</td>
<td>46 (18)</td>
</tr>
</tbody>
</table>
Table 4. Center-to-center spacing for wood stringers.

<table>
<thead>
<tr>
<th>NORMAL STRINGER SIZE (inches)</th>
<th>DEPTH OF SOIL (d) M (Feet)</th>
<th>SPAN LENGTH (L) M (Feet)</th>
<th>CENTER-TO-CENTER STRINGER SPACING (h) CM (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.6 (2)</td>
<td>1.2 (4)</td>
</tr>
<tr>
<td>4" x 8"</td>
<td>1.2 (4)</td>
<td>15 (6)</td>
<td>15 (6)</td>
</tr>
<tr>
<td></td>
<td>1.5 (5)</td>
<td>15 (6)</td>
<td>15 (5)</td>
</tr>
<tr>
<td></td>
<td>1.8 (6)</td>
<td>43 (17)</td>
<td>41 (16)</td>
</tr>
<tr>
<td></td>
<td>2.1 (7)</td>
<td>46 (18)</td>
<td>46 (18)</td>
</tr>
<tr>
<td>6" x 6"</td>
<td>1.5 (5)</td>
<td>18 (7)</td>
<td>20 (8)</td>
</tr>
<tr>
<td></td>
<td>1.8 (6)</td>
<td>46 (18)</td>
<td>46 (18)</td>
</tr>
<tr>
<td></td>
<td>2.1 (7)</td>
<td>46 (18)</td>
<td>46 (18)</td>
</tr>
<tr>
<td>6" x 8"</td>
<td>1.2 (4)</td>
<td>25 (10)</td>
<td>28 (11)</td>
</tr>
<tr>
<td></td>
<td>1.5 (5)</td>
<td>46 (18)</td>
<td>46 (18)</td>
</tr>
<tr>
<td>8" x 8"</td>
<td>1.2 (4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5 (5)</td>
<td>36 (14)</td>
<td>38 (15)</td>
</tr>
<tr>
<td></td>
<td>1.8 (6)</td>
<td>46 (18)</td>
<td>46 (18)</td>
</tr>
</tbody>
</table>

NOTES:

1. The maximum beam spacing listed is 46 cm (18 in.). A minimum of 1-inch wood or plywood should be used over stringers to support the earth cover for 82-mm bursts; 2-inch wood or plywood should be used for 120-mm or 152-mm bursts.

2. Lumber used in these spacing calculations is high quality and knot free. For lower grade lumber, spacing should be reduced.

3. When only 2"x4" lower grade is available, consider nailing two 2"x4" together to produce 4"x4" stringers.

4. As soil depth increases, contact burst live load decreases. Therefore, in many cases stringer spacing may increase even though dead load has increased.
INSPECTION CHECKLIST

The following checklist is provided to help supervisors ensure the safety of soldiers' fighting positions:

- Site location tactically sound
- Low profile maintained
- Materials of structural quality (standard construction material)
- Excavation walls sloped
- Setback for overhead is a minimum of 1 foot or ¼ C
- Stringers—
 - Firmly on a structural support
 - Spacing calculated using tables on pages 13 and 14
 - 2"x4" or 2"x6" stringers used on edge (the strength is in the depth of the lumber)

Revetment construction—

- Sheeting supported by pickets
- Pickets tied back
• Overhead covers--
 - Structural layer
 - Dustproof layer (plywood or panels)
 - Cushion layer at least 18 inches deep
 - Waterproof layer in place (also repels liquid chemicals)
 - Burst layer at least 18 inches deep (if used)
 - Camouflage in place

• Sandbags--
 - Sandbags filled approximately 75 percent
 - Bags lapped if single walls
 - Double walls tied together
 - Base height supported or walls curved